Unbounded p-Convergence in Lattice-Normed Vector Lattices
نویسندگان
چکیده
منابع مشابه
Unbounded Norm Topology beyond Normed Lattices
In this paper, we generalize the concept of unbounded norm (un) convergence: let X be a normed lattice and Y a vector lattice such that X is an order dense ideal in Y ; we say that a net (yα) un-converges to y in Y with respect to X if ∥∥|yα−y|∧x∥∥→ 0 for every x ∈ X+. We extend several known results about unconvergence and un-topology to this new setting. We consider the special case when Y is...
متن کاملUnbounded Norm Convergence in Banach Lattices
A net (xα) in a vector lattice X is unbounded order convergent to x ∈ X if |xα − x| ∧ u converges to 0 in order for all u ∈ X+. This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A ne...
متن کاملAn equivalence functor between local vector lattices and vector lattices
We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...
متن کاملSome results about unbounded convergences in Banach lattices
Suppose E is a Banach lattice. A net in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to provided that the net convergences to zero, weakly. In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and from ideals and sublattices. Compatible with un-convergenc, we show that ...
متن کاملStatistical uniform convergence in $2$-normed spaces
The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover, we define the conce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siberian Advances in Mathematics
سال: 2019
ISSN: 1055-1344,1934-8126
DOI: 10.3103/s1055134419030027